Climate change, plant ecology and conservation: a case study of the SF Bay Area [Thurs, Nov 5]

Climate change is expected to profoundly impact terrestrial vegetation, and the mechanisms, rate and extent of change will influence biodiversity conservation and the ecological functions of natural ecosystems. The San Francisco Bay Area has steep climate gradients and rugged topography, supporting a wide range of natural habitats. Using a novel application of multinomial logistic regression, we have modeled the projected impacts of climate change on Bay Area vegetation. Model projections are evaluated over a wide range of possible future climates, allowing us to evaluate sensitivity of vegetation to changing climate, without choosing specific future climate scenarios. Sensitivity is highly variable across the Bay Area. Perhaps surprisingly, sensitivity to climate change is modeled to be greater on north-facing slopes and cooler locations. The model projections are best interpreted as the long-term equilibrium response to a particular degree of climate change, but they do not provide insight into how fast this equilibrium will be achieved or the transient states that may occur in response to rapid climate change. We combine model results with a discussion of the ecological mechanisms of vegetation change to better understand the challenges raised by disequilibrium dynamics and the implications for conservation biology in coming decades.

Dr. David D. Ackerly
Professor,
Department of Integrative Biology
University of California, Berkeley
(www.ackerlylab.org)

Ackerly

A Network Approach to Assessing Social-Ecological Systems in the Cook Islands (Nov 10)

A social-ecological system approach emphasizes the connectivity that exists between natural and human systems. This coupling is evident at a local scale, with people accessing natural resources for food provisioning and economic gain, and ecosystems providing services such as storm protection and food security. At a larger scale, institutions, and regional and global ecological processes influence how systems function. I present findings from research in Colombia and the Solomon Islands where social networks, institutions, livelihoods, and local ecological knowledge were analyzed to determine the factors that influence an individual’s motivation to comply with marine resource management and to withstand large-scale ecological disturbances. Finally, I propose a network-based approach to quantify social-ecological system interaction and assess the drivers of resilience in the Cook Islands.

Dr. Jaime Matera
Anthropology Program
California State University Channel Islands

Matera Pic

Protecting and predicting genetic diversity of whole communities – a case study of Hawaiian reefs

Conservation strategies increasingly call for preserving areas of high genetic diversity. This shift necessitates a look beyond single-species studies toward methods to predict and map community-level trends in genetic diversity. Theory suggests that genetic diversity primarily responds to habitat area and isolation, but ecology particular to each species nevertheless modify spatial patterns across co-distributed species. The balance and sources of convergent and divergent forces shaping genetic diversity of a community are largely unexplored.  With data for 47 reef species sampled across 16 Hawaiian Islands, we test a suite of hypotheses about drivers of biodiversity with a novel metric representing the emergent genetic diversity of the community. Results reassuringly support foundational theory on the relationship of diversity to habitat, but also suggest intriguing eco-genetic feedbacks and concerning signs that thermal stress has effected the genetic resilience of the whole reef community. I discuss the implications of these results for managing and protecting genetic diversity at the community level.

Kimberley Selkoe

Center Associate, NCEAS, UCSB /
Associate Research Biologist, Marine Science Institute, UCSB

selkoe

Transitions of social-ecological subsistence systems in the Arctic

In this round-table, I will discuss how global change are transforming small-scale, native, resource-dependent communities in the Arctic. These social-ecological systems are increasingly exposed to global warming, industrial development and globalization, which subsequently alter the local SES dynamics. Subsistence use of fish and wildlife is a cornerstone in these communities. This traditional utilization of natural resources are commonly assumed to be donor-controlled, in which the users do not control the resource level but adapt to the fluctuating availability of fish and wildlife. A combination of increased harvest efficiency through the introduction of new technology, increased resource demand through population increase and commercialization, and reduced resource stocks by exogenous pressures such as climate change, is likely to increase the pressure on the stocks of fish and wildlife. The result could be a transition of the SES from a provisioning action situation, where the collective challenge is to secure subsistence on a local scale, to an appropriation action situation where the collective challenge is to avoid overuse of a common-pool resource on the scale of the resource stock. We applied cross-national comparison of Arctic Alaska, Canada and Greenland, synthesized secondary data from documents, official statistics and grey and scientific literature, and asked: What are the evidence for SES transitions in the Arctic? Which exogenous pressures are associated with transitions, and what conditions might prevent transitions? How does the transitions change the focus and sustainability challenges faced by the governance systems?

Although the results I will present are from the Arctic, I hope the talk will stimulate a more general discussion on how global change might transform local social-ecological systems.

Dr Per Fauchald

NCEAS visiting scientist

Senior researcher at the Norwegian Institute for Nature Research

Per

When does hypoxia affect management performance of fisheries? A MSE of Dungeness crab fisheries in Hood Canal, WA

Hypoxia [dissolved oxygen (DO) < 2 mg/L] is one of the key threats to some of the most productive regions of the marine environment (e.g., estuaries). Although mortality can occur, mobile organisms have the potential to avoid the most severe low oxygen conditions, but suffer ecologically significant indirect and sublethal impacts as a result. In Washington State, USA, a fjord estuary of the Puget Sound marine ecosystem, known as Hood Canal (110 km), regularly experiences seasonal hypoxia. My dissertation addresses several important gaps in the current knowledge pertaining to the non-lethal biological effects of hypoxia on the mobile benthic and pelagic species of Hood Canal – for the sake of time and your sanity, I’ll be focusing on the benthos. Using acoustic telemetry, I quantified movement patterns and distributional shifts of Dungeness crab (Metacarcinus magister), an abundant and widely distributed species. Although highly mobile, Dungeness crab displayed more localized, rather than large-scale, directional movement relative to hypoxia. More specifically, the tagged crabs showed significant distributional shifts towards shallower waters. As one of the most important fisheries in Puget Sound, I wanted to then investigate the generalized relationship between hypoxia and the Dungeness crab harvest (3-S) management strategy. Inferred by the shoaling behavior from the field, an age-structured population model was constructed to test several hypoxia-scenarios with other stressors, including harvest, illegal crab fishing, and incidental capture mortality. It was found that the 3-S management strategy is most sensitive to the influence of hypoxia when other sources of demographic restrictions are considered, underscoring the uncertainty associated with a data-poor species under multiple anthropogenic and environmental stressors.

FieldWork_2010_HoodCanal Tagged_Crab

 

Halley E. Froehlich, Ph.D. (Halley is the untagged one on the left)

Postdoctoral Researcher

National Center for Ecological Analysis & Synthesis
University of California, Santa Barbara

 

 

Habitats, coastal protection and the SNAP Coastal Defenses Working Group

For this round-table, I’ll start by giving an overview of a number of topics around the fascinating field of coastal ecosystems and coastal risk reduction. I’ll give an update on the activities of the SNAP Coastal Defenses Working Group and my work within this group, touch upon a closely coastal hazards assessment exercise in Papua New Guinea and an upcoming project on mangrove restoration for coastal resilience. I would like to combine this talk with a discussion on the challenges of small data; of bringing together diverse disciplines to bear on a single issue and; of finding ways to tie these disparate strands together.

For a sneak preview, here is an outline of some results from an almost (but never) complete meta-analysis:

We synthesize global evidence from field measurements of wave and storm surge reductions in natural coastal habitats and data on the costs and benefits of habitat restoration projects targeted at coastal protection. 76 field measurements show that coastal habitats can reduce wave heights up to 79% (or wave energy up to 96%). Coral reefs are the most effective habitats for wave reduction, followed by salt-marshes, mangroves and seagrass and kelp beds. In addition to waves, coastal mangrove and marsh wetlands can reduce storm surge heights by up to 70% over extents of several kilometers. We find a strong relationship between incident wave heights and wave reduction extents for all habitat types. Other critical biophysical parameters that influence wave reduction include habitat width (coral reefs and seagrass/kelp) and vegetation height (mangroves, salt-marshes). We also discuss the influence of a few engineering ratios (e.g. the ratio of wave height H over water depth, h) on wave reduction extents. We conduct the first global review of the costs and benefits of past and on-going habitat restoration projects targeted at coastal protection. The projects provide a wide range of coastal protection and risk reduction benefits including reductions in erosion, flood damage and engineering costs. Quantitative assessments of benefit-cost ratios and comparisons to engineering structures suggest that mangrove projects are the most cost-effective and are, on average, twice as cheap as comparable engineering structures for wave reduction.

Hope to see you there!

Sid
IMG_3278

July 1: Emotions in Scientific Work and Scientific Creativity

The sociology of emotions and the sociology of science arose concurrently (circa 1975-present), but connections between these subfields have been rare. Existing research pleads for greater integration and contextualization. This talk will synthesize and critically assess eight decades of research on emotional aspects of science. Taken together, extant literature indicates that emotions pervade science as a practice, profession and social institution. Emotions support the ability to perceive and observe empirical patterns and relationships, and to make specific types of knowledge claims. They are elemental facets of scientists’ career evaluations and work life, and their influence on the research process informs and consequentially impacts the form and content of scientific knowledge. Collective emotional states and affective relationships are also essential for scientific collaboration and for fomenting large-scale collective action in the form of scientific social movements. Finally, emotions gave original impetus to science as a distinctive social institution, and continue to support it by acting as agents of social control in the scientific community. Overall, research on emotions and science is rapidly emerging as a generative area of research in its own right, and has the potential to significantly advance general sociology.

Dr. John Parker
ASU/NCEAS

Inline image 2

Looking for hotspots while the world gets hotter: multi-species genetic data inform landscape-scale conservation in the face of climate change in the San Joaquin Desert of California.

Global climate change can create patterns of biodiversity where once-widespread species become restricted to small islands of persistence, commonly called climate refugia. Species can subsequently recolonize the intervening spaces between the islands, masking the historical range restriction. Advances in molecular genetic technology now allow us to see the signature of these historical restriction events. In our ongoing study of desert vertebrates in the San Joaquin Valley, we are layering patterns of population subdivision from multiple species into a composite map of historical population centers. We have significant population subdivison as well as pattern concordance among some species, suggesting past refuges in the Panoche Hills and the Carrizo Plain. A parallel study projecting the distribution of the blunt-nosed leopard lizard following the current climate change event shows both spots as potential refugia, suggesting the tantalizing possibility that contemporary hotspots may serve as future redoubts.

st13-155

Michael Westphal
Bureau of Land Management
Hollister Field Office, CA

IPCC, Oceans and a 2°C warming target

Next month, the global science community will come together ahead of the COP21 of the UNFCCC in December to discuss the key issues concerning climate change. Discussion will include a focus on the ocean. The ocean is critical to life on Earth through its regulation of atmospheric gases, stabilisation of planetary heat, and provision of food and resources to well over 4 billion people worldwide. I will start with a peek at the processes for the Fifth Assessment Report (AR5) of the IPCC, including the roles of the authors, editors and expert reviewers, coordination across chapters and working groups and assessment of the literature. AR5 included a number of oceans chapters for the first time, which identified serious risks to marine ecosystems, fisheries, and coastal livelihoods. Focusing on these, I’ll discuss the key findings, updating with recent knowledge, with particular reference to the 2°C global warming target.

Elvira Poloczanska
CSIRO Oceans and Atmosphere Flagship, Brisbane, Australia
Global Change Institute, University of Queensland, Brisbane, Australia

CSIRO Hobart -    - photo by Bruce Miller 4/2008

CSIRO Hobart – – photo by Bruce Miller 4/2008

 

Catalysing transdisciplinary synthesis in ecosystem science and management

On Friday May 15, 2015, we have a special roundtable session with Alison Specht at ACEAS, who will be visiting NCEAS. Alison will give us an overview of NCEAS’ cousin across the Pacific, talk about an upcoming paper on synthesis in ecosystem science and management and will also discuss her perspectives on ACEAS and other synthesis centres. Do join us for what should be a very interesting discussion!

Alison Specht
Associate Professor Alison Specht is an environmental scientist with broad expertise in research, teaching, and community engagement. She gained her qualifications and taught at the University of Queensland, and for many years was a research and teaching academic at Southern Cross University in northern New South Wales, Australia. She has written scientific papers and book chapters, and is the co-author of two major books on the nature and assessment of Australian vegetation.

Between 2009 and 2014 she was director of the Australian Centre for Ecological Analysis and Synthesis <www.aceas.org.au>, a facility of the Terrestrial Ecosystem Research Network <www.tern.org.au>, an Australian-government funded datanet. She has been a member of the DataONE Usability and Assessment Working Group since its inception, and has great interest and expertise in data management and the preservation of archival data. She is about to take up a position as Directrice of the CEntre for the Synthesis and Analysis of Biodiversity in France <http://cesab.org/index.php?lang=en>. She initiated the formation of the International Synthesis Consortium <www.synthesis-consortium.org> which has recently had its second meeting, whose mission is to increase the effectiveness and recognition of the value of synthesis centres.

Here are links to two papers that Alison will be touching upon in her discussion:

Transdisciplinary synthesis for ecosystem science, policy and management: the Australian experience.

Perceived discontinuities and constructed continuities in virtual work

Alison Apr 10_face