November 15 – Mobile technologies for fisheries management and enforcement

We carry in our pockets powerful computers and sensors everywhere we go, even when we go to sea. How can we use the special capabilities of mobile devices to help manage fisheries – or even to aid enforcement of fisheries regulations? After surveying the current state of mobile hardware and software, we’ll look at two concrete examples: eCatch, a commercial fishing logbook app in use by The Nature Conservancy; and eFins, a regulation enforcement aid designed for the CA Dept. of Fish & Wildlife. We’ll step through the lessons learned from both apps. Finally, we’ll discuss the emerging capabilities of mobile devices and ways to utilize those new capabilities for fisheries goals.

Speaker: Todd Bryan

Todd works on the design and implementation of SeaSketch. He has extensive experience in commercial software development, having served as tech lead for GoToMeeting and GoToWebinar at Citrix Online. He was also one of the initial employees at the cloud computing firm RightScale

November 1 – Tipping points, recovery potential and baselines in marine systems

Large-scale changes in marine ecosystems with significant both environmental and economic consequences are observed in increasing numbers worldwide. Alterations in structure and functioning of marine ecosystems have been increasingly reported through the world in relation to overfishing, climate change and for example eutrophication. These pronounced and abrupt multi-trophic level reorganizations of large-scale ecosystems are usually termed ecosystem regime shifts. In my talk, I will provide an overview of some main reported regime shifts in marine ecosystems in relation to potential underlying mechanisms. To exemplify the existence of several potential ecosystem states, I will present the Baltic Sea as a case study, as it offers long-term monitoring data. My presentation will include results from state-of-the-art statistical analysis allowing the detection of non-linearity and thresholds in food-web interactions and their potential to recover. The results suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular under climate change. Several research needs in the field of regime shifts, recovery and baselines will be discussed.

Speaker: Thorsten Blenckner

Thorsten is currently an Associate Professor and leader of the Marine Theme, at the Stockholm Resilience Centre, Stockholm University, Sweden. He has a background in aquatic ecology, climate change and ecosystem processes and function.

October 4 – Precipitation Variability Effect on Primary Production: experimentation, modelling and data synthesis from local to global scale

My talk is focused on responses of arid to sub-humid ecosystems to climate change. The main objective of my research is to study how interannual variability of precipitation affects patterns of primary production and to determine which mechanisms govern such responses. In order to investigate cause-effect relationships between precipitation variability and ecosystem response, I carry out a large-scale manipulative experiment, participate in modeling projects, and analyze worldwide long-term data set. Results from these efforts show that interannual precipitation variability itself has a strong effect on primary productivity and that this relationship is independent from the effects of precipitation amount. At the local scale, precipitation variability effects vary among plant-functional types; and, at the global scale, dry sites respond positively and mesic sites respond negatively to increases in interannual precipitation coefficient of variation.

Speaker: Laureano Gherardi

Laureno is an ecosystem ecologist interested in mechanisms governing ecosystem responses to climate change at multiple temporal and spatial scales. In order to pursue this research he combines different complementary approaches ranging from field manipulative experiments to modeling efforts to synthesis of long-term archived data.

May 10: The geography of spatial synchrony

Spatial synchrony, defined as correlated temporal fluctuations among populations, is a fundamental feature of population dynamics, but many aspects of synchrony remain poorly understood. Few studies have examined detailed geographical patterns of synchrony; instead most focus on how synchrony declines with increasing linear distance between locations, making the simplifying assumption that distance-decay is isotropic. By synthesizing and extending prior work, we show how geography of synchrony, a term which we use to refer to detailed spatial variation in patterns of synchrony, can be leveraged to understand ecological processes including identification of drivers of synchrony, a longstanding challenge. We focus on three main objectives: 1) showing conceptually and theoretically four mechanisms that can generate geographies of synchrony; 2) documenting complex and pronounced geographies of synchrony in two important study systems; and 3) demonstrating a variety of methods capable of revealing the geography of synchrony and, through it, underlying ecology. By documenting the importance of geographies of synchrony, advancing conceptual frameworks, and demonstrating powerful methods, we aim to help elevate the geography of synchrony into a mainstream area of study and application.

Speaker: Jon Walter

Jon Walter is an ecologist who uses long-term observations, theoretical and data-driven models, and experiments to examine spatiotemporal dynamics of populations and communities. He is currently a postdoctoral researcher affiliated with Virginia Commonwealth University and the University of Kansas, where he is working on projects related to spatial synchrony and insect outbreaks. He obtained his PhD from the University of Virginia in 2014, where his dissertation research focused on spatiotemporal patterns in the gypsy moth invasion.

April 19: (Non)parallel evolution in salmon

Among recent studies of parallel and convergent evolution, appreciation is growing for the ubiquity and importance of non-parallelism, or variation in the extent of parallelism due to differences in the direction or magnitude of divergence among ecotype pairs. In this talk, I’ll first discuss a recent review of studies of parallel evolution in fishes with the goal of determining just how parallel is parallel evolution? Next, I’ll explore two potential drivers of non-parallelism, sexual selection and evolutionary history, in two salmon species. Finally, I’ll briefly outline our NCEAS SASAP working group project on declines in salmon size and age in Alaska. Overall, I hope to highlight the variable extent of parallelism in studies of ostensibly parallel evolution and the value of investigating sources of variation among evolutionary replicates.

Speaker: Krista Oke

Krista is a graduating PhD student from Andrew Hendry’s lab at McGill University, Montreal, where she studied (non)parallel evolution in fishes. Previously, she completed her honours research on hybrids between brown trout and genetically modified Atlantic salmon at Memorial University of Newfoundland, under the supervisor of Ian Fleming. Next month, she will begin a postdoc with Eric Palkovacs at UCSC, as part of an NCEAS SASAP working group project focused on declining salmon size and age in Alaska.

April 5: Inferring species presence using environmental DNA

One of the great challenges with aquatic conservation is knowing what species are present below the water’s surface.  This is particularly true for rare species such as newly arrived non-indigenous species and threatened and endangered species. A new approach to species detection, coined environmental DNA (eDNA), uses the telltale genetic signature of aquatic species in the form of tissue, cells, organelles, and DNA fragments in the water that are captured and extracted to infer presence.  First generation applications of the eDNA methodology were applied to early detection of invasive species, but now the approach is being used to identify entire communities. In this discussion, we will explore the evolution of inferring species presence using environmental DNA, from the original detections of Bighead and Silver Carp in the Great Lakes to the attempts at estimating species richness. Throughout the development of eDNA approaches, mathematical and statistical models have motivated the sampling design and quantification of errors, and these models have ultimately driven inferences of species presence. The resulting growth in eDNA applications is leading to a new era in globally mapping the distribution and identity of species for improved aquatic conservation and management.

Speaker
Christopher Jerde
Marine Science Institute, University of California Santa Barbara

Christopher Jerde grew up fishing and camping among the prairie pothole lakes of northeastern South Dakota. He completed his B.Sc. (2008) and M.Sc. (2002) at Montana State University surrounded by open spaces and trout. While Montana cultivated a keen interest in ecology, his experiences studying bison population dynamics motivated him to build a broader quantitative background, and he migrated north to the Centre for Mathematical Biology at the University of Alberta where he completed his Ph.D. (2008).  As a postdoctoral fellow and a research assistant professor at the University of Notre Dame, Chris led the development of an environmental DNA surveillance program for invasive species, most notably searching for Bighead and Silver Carp. Now at UCSB’s Marine Science Institute, Chris’s research program emphasizes the application of novel quantitative, field, and laboratory approaches coupled with emerging technology to address pressing environmental problems.

March 15 – Non-climate processes and ‘species on the move’

Evidence from the past several decades shows that species distributions are shifting in response to climate change. However, even the most robust studies attribute less than half of observed changes in species distributions to local climate factors. Foundational ecology considers climate as just one of many drivers that determine species distributions. I will review five prevalent mechanisms that may explain some of the high variance around the relationship between species range shifts and climate velocity, and describe how they might affect a species’ climate tracking: (1) biogeographic boundaries, (2) habitat gaps and fragmentation, (3) biotic interactions such as competition, predation, and mutualism, (4) other abiotic constraints including light and trace elements, and (5) life history traits that determine dispersal capacity. This work supports conservation initiatives for threatened species by highlighting several processes that may limit their potential redistribution, and can inform analyses of observational data and species distribution models that seek to incorporate multiple processes rather than climate alone.

 

Alexa Fredston-Hermann
fredstonhermann@ucsb.edu

Alexa is a third-year PhD student at the Bren School of Environmental Science & Management at UCSB. Her research focuses on biogeographic processes that may prevent species from tracking climate change, particularly in the oceans. She has also studied human impacts to coastal marine ecosystems, and participated in the Ridges to Reef Fisheries SNAPP Working Group. Before entering graduate school, she worked for the Environmental Defense Fund on management of the West Coast groundfish fishery, and graduated from Princeton University in 2012 with a B.A. in Ecology and Evolutionary Biology.

March 1: Observing carbon cycle climate feedbacks from space


Carbon cycle climate feedbacks remain one of the most uncertain and complex aspects of the Earth System. Considerable theory exists, but in situ observations are sparse and using them to test alternative hypotheses and to quantify the strength of feedbacks has proved challenging. Satellite observations of XCO2 provide greater coverage spatially, particularly in some crucial but undersampled regions and have the potential to complement more accurate in situ CO2 and more process-relevant local flux observations. We report early analyses of OCO-2 and GOSAT data showing evidence for satellite constraints on both positive and negative feedback mechanisms in the carbon-climate system. Satellite CO2, by providing greater resolution on land in over the oceans, in the tropics, allows linking both growth, and drought-related emissions from ecosystems to be better quantified, allows better linkage of fluxes to mechanisms of disturbance and CO2 fertilization, and provides a new and complementary constraint to others currently used. We show that the tropical continents differ in their responses and explore why they may differ, based on their prior disturbance, soil and functional diversity. Extratropical feedbacks may also now be becoming evident in observations, and we discuss the role of satellite CO2 in constraining positive and negative feedbacks to climate in the extratropics.

Speaker: David Schimel, Jet Propulsion Laboratory

Dr. David Schimel is currently a Senior Research Scientist at the Jet Propulsion Lab, leading research focused on carbon-cycle climate interactions, combining models and observations.  For the previous five years, Schimel led the National Ecological Observatory Network project, was responsible for the top-level science design, site selection and observing system simulations.  From 2001-2007, Schimel was at the National Center for Atmospheric Research as a senior scientist, with research focused on assimilation of carbon cycle data in land and atmospheric models. From 1998-2001, Schimel served as founding Co-Director and Managing Director of the Max Planck Insitute for Biogeochemistry in Jena, Germany.  From 1990-1998, Schimel was at NCAR.  Schimel served as convening Lead Author for the first IPCC assessment of the carbon cycle, and has served as an IPCC CLA four times, and as a Lead Author twice. From 1988-1989, Schimel was an NRC Fellow at NASA Ames. Dr. Schimel obtained his PhD in 1982 from Colorado State University, studying atmosphere-ecosystem exchange of nitrous oxide and ammonia.

Feb. 15: Evidence for competition among salmon at sea

Pink salmon

Salmon scientists frequently focus research on the link between salmon production and oceanographic conditions, but there is growing evidence that intraspecific and interspecific competition are also important. Pink salmon represent nearly 70% of all adult salmon returning from the North Pacific Ocean (~670 million fish in 2009) and their abundance has doubled since the mid-1970s ocean regime shift. The fixed two-year life cycle of pink salmon and their strong alternating-year pattern of abundance provides a unique opportunity to test hypotheses about competition at sea. In this presentation, I review evidence for competition, including its effects on salmon growth, age-at- maturation, and survival. Much of the evidence involves sockeye salmon, which typically spend two or three winters at sea and have high diet overlap with pink salmon. There is also evidence that pink salmon impact the growth, age, and survival of other species, such as Chinook salmon. Finally, I conclude that this evidence has important implications for large-scale hatcheries, which may contribute to a Tragedy of the Commons.

staff_greg
Speaker
Dr. Greg Ruggerone
Natural Resources Consultants, Inc.
gruggerone@nrccorp.com

Dr. Greg Ruggerone has investigated population dynamics, ecology, and management of Pacific salmon in Alaska and the Pacific Northwest since 1979. Much of his earlier experience stems from activities as Project Leader of the Alaska Salmon Program, University of Washington. His research typically involves factors affecting growth, age at maturation, and survival of salmon in freshwater and marine habitats. Lately, this research has focused on species interactions in the ocean, especially competition between pink salmon and other salmon. He is past Chair of the Columbia River Independent Scientific Advisory Board and past Chair of the Independent Scientific Review Panel, and he currently serves as an independent science reviewer for the California WaterFix Project.

Feb 1, 2017 – Aligning coastal restoration with ecological and societal needs

Coastal habitats play critical ecological and societal roles in nearshore and estuarine systems.  Yet despite their importance, reefs, marshes and coastal forests around the world have been highly degraded and reduced to a small fraction of their historic extent.  In the United States and elsewhere, billions of dollars are being invested in coastal habitat restoration.  New policies emphasize planning processes that work across sectors and jurisdictions to fund projects that provide the greatest returns for people and nature.  As a result, state, county and local government agencies, non-governmental organizations and industry are facing hard questions about where to invest and how to set targets to meet these dual goals.  We have formed a multi-agency and NGO partner working group aimed at increasing understanding agency needs for decision-making, assessing past restoration projects, and developing achievable metrics and approaches for aligning ecological and social goals in future efforts.

Jonathan Grabowski, Ph.D.
J.Grabowski@northeastern.edu

Jon

 My research interests span issues in ecology, fisheries and conservation biology, social-ecological coupling, environmental policy, and ecological economics. I have used a variety of estuarine (oyster reef, seagrass, salt marsh, mud bottom) and marine (kelp bed, cobble-ledge) systems to examine how resource availability, habitat heterogeneity and predation risk affect population dynamics, community structure, and ecosystem functioning. Much of this work focuses on economically important species such as lobsters, cod, herring, monkfish, and oysters, and consequently is relevant for fisheries and ecosystem management. My lab also focuses on how habitat degradation and restoration influence benthic community structure, population structure, and the transfer of energy to higher trophic levels. In addition, we are interested in how fisheries management initiatives such as the design of closed areas, delineation of stock boundaries, fishing gear modifications, and quota setting impact fish population structure and fisheries productivity, essential fish habitat protection, community structure, and the social capital of stakeholders.

 

My lab’s research involves highly coupled social-ecological systems and integrates social and natural science approaches. For instance, we are examining the ecological consequences of shoreline hardening on ecosystem service provisioning while also investigating how the environmental connectedness of coastal residents influences their decision-making around this issue. We are also examining factors that influence coastal fishing communities’ perceptions of and trust in management to help improve their buy in and identify potential barriers. Finally, we are determining how factors such as urbanization and resource specialization influence the perceptions and values of coastal residents so that we can design more effective environmental policies around issues such as climate hazard preparedness and coastal habitat and resource management.